NEOLAURALLENE, A NEW HALOGENATED C-15 NONTERPENOID FROM THE RED ALGA LAURENCIA OKAMURAI YAMADA 1

 $\label{thm:minoru} \mbox{\tt Minoru SUZUKI, Etsuro KUROSAWA, * Akio FURUSAKI, Shin-ichiro KATSURAGI,} \\ \mbox{\tt and Takeshi MATSUMOTO}$

Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060

The structure and the absolute configuration of a new C-15 bromoallene, which has been isolated from the red alga <u>Laurencia</u> okamurai Yamada, were confirmed by X-ray crystallographic analysis.

In the previous papers, we reported the structures of the unique C-15 non-terpenoids which have been isolated from the red alga <u>Laurencia okamurai</u> Yamada (Mitsude-sozo), collected at Bikuni, Hokkaido. Further investigation of this alga has yielded a new metabolite (0.5% of the extract^{2,3)}), designated as neolaurallene, whose structure is reported herein.

Neolaurallene ($\frac{1}{1}$), $C_{15}^{H}_{20}^{O}_{2}^{B}_{2}^{A}$) mp 88-89 °C (hexane), $[\alpha]_{D}^{22}$ +180° (c 0.62; CHCl₃), showed in its IR, H NMR, and ^{13}C NMR spectra⁵) the presence of -CH-C=CHBr $[\nu_{max}]_{10}^{A}$ may 1963 cm⁻¹; δ 5.46 (1H, dd, J=6, 6 Hz) and 6.08 (1H, dd, J=6, 2 Hz); δ 201.3 (s), 102.1 (d), and 73.9 (d)] and -CH-CH- $[\nu_{max}]_{10}^{A}$ 1655 cm⁻¹; δ 5.5-5.9 (2H, m); δ 129.2 (d) and 127.3 (d)] groupings, and further no other double bond. Hence neolaurallene ($\frac{1}{1}$), having five degrees of unsaturation, must have a cyclic structure consisted of two rings. Since the IR spectrum of $\frac{1}{1}$ revealed the absence of the hydroxyl and the carbonyl functionalities, the two oxygen atoms of $\frac{1}{1}$ were assumed to be involved in ether linkages. Furthermore, the presence of the ethyl and the bromoallenic side chains in $\frac{1}{1}$ was indicated by the fragment ions at $\frac{m}{2}$ 365, 363, 361 (M⁺-C₂H₅) and 275, 273 (M⁺-C₃H₂Br) in the mass spectrum of $\frac{1}{1}$ respectively. Detailed spectral comparison of neolaurallene ($\frac{1}{1}$) with the previously described bromoallenes, possessing the same molecular formula as $\frac{1}{1}$, isolaurallene ($\frac{2}{1}$), and aurallene, be epilaurallene, choose kumausallene, ded and microcladallene A, suggests that neolaurallene ($\frac{1}{1}$) is a stereoisomer of isolaurallene ($\frac{2}{1}$). Thus in oder to establish the structure including the absolute configuration, we have carried out an X-ray crystallographic study of $\frac{1}{1}$.

The crystal data for 1 were as follows: $C_{15}H_{20}O_{2}Br_{2}$, monoclinic, space group $P2_{1}$, a=13.338(7), b=4.929(1), c=12.435(5) Å, $\beta=98.22(4)^{\circ}$, Z=2, $D_{c}=1.609$ g cm⁻³. The intensities of 1002 independent reflections with $20<50^{\circ}$ were measured on a Rigaku four-circle diffractometer with graphite-monochromated Mo K α radiation. The structure was solved by the heavy-atom method, and was refined by the block-

diagonal least-squares method with anisotropic temperature factors. The absolute configuration was determined by examination of 20 Bijvoet inequalities for Mo K α radiation. After all the hydrogen atoms had been located in a difference Fourier map, further least-squares refinements were carried out including the hydrogen atoms. The final R value was 0.069. The molecular skeleton of 1 thus determined is illustrated in Fig. 1.

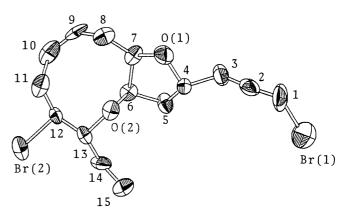


Fig. 1. A perspective drawing of neolaurallene (1).

References

- 1) Part 59 of "Constituents of Marine Plants." Part 58: M. Suzuki, M. Segawa, T. Suzuki, and E. Kurosawa, Bull. Chem. Soc. Jpn., 56, 3824 (1983).
- 2) M. Suzuki and E. Kurosawa, Tetrahedron Lett., $\underline{22}$, 3853 (1981); M. Suzuki and E. Kurosawa, Chem. Lett., 1982, 289.
- 3) Specimen collected in August 1982 displayed that the major metabolites are C-15 nonterpenoids (about 20% of the extract) instead of laurinterol and debromolaurinterol (only 4%).
- 4) The molecular formula of $\frac{1}{2}$ was confirmed by HR-MS ($\frac{m}{z}$ 311.0655, calcd for $C_{15}H_{20}O_2^{79}$ Br, M⁺-Br, 311.0648) and the acceptable elemental analysis of $\frac{1}{2}$.
- The spectral data for neolaurallene (1): IR(CHCl 3), v_{max} 3065, 3015, 1963, 1655, 1190, 1123, 1050, 1019, 993, 897, and 879 cm⁻¹; ¹H NMR (100 MHz; CDCl 3), δ 1.09 (3H, t, J=7 Hz), 1.5-2.4 (5H, m), 2.5-3.0 (2H, m), 3.22 (1H, m), 3.6-4.1 (4H, m), 4.86 (1H, dddd, J=7, 7, 6, 2 Hz), 5.46 (1H, dd, J=6, 6 Hz), 5.5-5.9 (2H, m), and 6.08 (1H, dd, J=6, 2 Hz); ¹³C NMR (22.5 MHz; CDCl 3), δ 201.3 (s), 129.2 (d), 127.3 (d), 102.1 (d), 84.4 (d), 79.6 (d), 74.5 (d), 73.9 (d), 72.7 (d), 52.8 (d), 39.0 (t), 34.7 (t), 26.8 (t), 23.2 (t), and 11.4 (q); MS (70 eV), m/z (rel intensity) 365, 363, 361 (0.1; M^+ -C₂H₅), 313, 311 (5; M^+ -Br), 275, 273 (25; M^+ -C₃H₂Br), 125 (26), 109 (40), 107 (41), 95 (16), 93 (26), 81 (30), 79 (68), 77 (31), 67 (100), 65 (33), and 55 (58).
- a) K. Kurata, A. Furusaki, K. Suehiro, C. Katayama, and T. Suzuki, Chem. Lett., 1982, 1031;
 b) A. Fukuzawa and E. Kurosawa, Tetrahedron Lett., 1979, 2797;
 c) M. Suzuki, K. Koizumi, H. Kikuchi, T. Suzuki, and E. Kurosawa, Bull. Chem. Soc. Jpn., 56, 715 (1983);
 d) T. Suzuki, K. Koizumi, M. Suzuki, and E. Kurosawa, Chem. Lett., 1983, 1639;
 e) D. J. Kennedy, I. A. Selby, H. J. Cowe, P. J. Cox, and R. H. Thomson, J. Chem. Soc., Chem. Commun., 1984, 153.
- 7) The intensity measurements were performed at the High Brilliance X-Ray Diffraction Laboratory of Hokkaido University.

(Received April 16, 1984)